Inverse spectral theory of finite Jacobi matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inverse Spectral Theory for Finite Cmv Matrices

For finite dimensional CMV matrices the classical inverse spectral problems are considered. We solve the inverse problem of reconstructing a CMV matrix by its Weyl’s function, the problem of reconstructing the matrix by two spectra of CMV operators with different “boundary conditions”, and the problem of reconstructing a CMV matrix by its spectrum and the spectrum of the CMV matrix obtained fro...

متن کامل

M-functions and Inverse Spectral Analysis for Finite and Semi-infinite Jacobi Matrices

We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H. Our results include a new proof of the central result of the inverse theory (that the spectral measure determines H). We prove an extension of Hochstadt’s theorem (who proved the result in the case n = N) that n eigenvalues of an N ×N Jacobi matrix, H, can replace the first n matrix elements in determining H uniq...

متن کامل

Inverse spectral analysis for finite matrix-valued Jacobi operators

Consider the Jacobi operators J given by (J y)n = anyn+1+bnyn+a∗n−1yn−1, yn ∈ C (here y0 = yp+1 = 0), where bn = b ∗ n and an : det an 6= 0 are the sequences of m × m matrices, n = 1, .., p. We study two cases: (i) an = a∗n > 0; (ii) an is a lower triangular matrix with real positive entries on the diagonal (the matrix J is (2m+1)-band mp×mp matrix with positive entries on the first and the las...

متن کامل

Trace Formulas and Inverse Spectral Theory for Jacobi Operators

Based on high energy expansions and Herglotz properties of Green and Weyl m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In addition, we consider connections with inverse spectral theory, in particular uniqueness results. As an application we work out a new approach to the inverse spectral problem of a class of reflectionless operators producing explicit ...

متن کامل

On an inverse eigenproblem for Jacobi matrices

Recently Xu 13] proposed a new algorithm for computing a Jacobi matrix of order 2n with a given n n leading principal submatrix and with 2n prescribed eigenvalues that satisfy certain conditions. We compare this algorithm to a scheme proposed by Boley and Golub 2], and discuss a generalization that allows the conditions on the prescribed eigenvalues to be relaxed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2002

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-02-03078-7